101 research outputs found

    New Results From BABAR

    Get PDF
    The BABAR experiment at the PEP-II asymmetric B factory at SLAC has collected a large sample of data at the Υ(4S)\Upsilon(4S) resonance. I will summarize BABAR's new results on CP violation, B mixing and lifetimes, and a selection of rare B decays. In particular, I will describe in detail the measurement of the CP violating parameter sin2β\sin{2\beta}; BABAR has observed CP violation in the neutral B system finding sin2β=0.59±0.14±0.05\sin{2\beta} = 0.59 \pm 0.14 \pm 0.05.Comment: 20 pages, 27 postscript figues, submitted to the 21st Physics In Collision Conference (PIC 2001

    The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    Full text link
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying, physically-motivated blurring kernel; and combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.Comment: 30 pages, 13 figures, submitted for publication, with minor edits (v2) to address comments from the anonymous referee. Simulated data are available for download and participants can find more information at http://great3.projects.phys.ucl.ac.uk/leaderboard

    Photometry, Centroid and Point-Spread Function Measurements in the LSST Camera Focal Plane Using Artificial Stars

    Full text link
    The Vera C. Rubin Observatory's LSST Camera pixel response has been characterized using laboratory measurements with a grid of artificial stars. We quantify the contributions to photometry, centroid, point-spread function size, and shape measurement errors due to small anomalies in the LSSTCam CCDs. The main sources of those anomalies are quantum efficiency variations and pixel area variations induced by the amplifier segmentation boundaries and "tree-rings" -- circular variations in silicon doping concentration. We studied the effects using artificial stars projected on the sensors and find that the resulting measurement uncertainties pass the ten-year LSST survey science requirements. In addition, we verify that the tree-ring effects can be corrected using flat-field images if needed, because the astronomic shifts and shape measurement errors they induce correlate well with the flat-field signal. Nevertheless, further sensor anomaly studies with on-sky data should probe possible temporal and wavelength-dependent effects.Comment: Submitted to PAS
    corecore